Incident Duration Prediction Based on Latent Gaussian Naive Bayesian classifier

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voting Principle Based on Nearest kernel classifier and Naive Bayesian classifier

This paper presented a voting principle based on multiple classifiers. This voting principle was based on the naïve Bayesian classification algorithm and a new method based on nearest to class kernel classifier that was proposed. The recognition ability of each classifier to each sample is not the same. A model of each classifier was obtained by the training on the train data, which acts as bas...

متن کامل

Nomograms for Visualization of Naive Bayesian Classifier

Besides good predictive performance, the naive Bayesian classifier can also offer a valuable insight into the structure of the training data and effects of the attributes on the class probabilities. This structure may be effectively revealed through visualization of the classifier. We propose a new way to visualize the naive Bayesian model in the form of a nomogram. The advantages of the propos...

متن کامل

Improving Naive Bayesian Classifier by Discriminative Training

Discriminative classifiers such as Support Vector Machines (SVM) directly learn a discriminant function or a posterior probability model to perform classification. On the other hand, generative classifiers often learn a joint probability model and then use the Bayes rule to construct a posterior classifier. In general, generative classifiers are not as accurate as discriminative classifiers. Ho...

متن کامل

Generative, Fully Bayesian, Gaussian, Openset Pattern Classifier

Observable patterns live in R and belong to K different classes. We are given a supervised training database, (X, L), where X represents the training patterns of all the classes and L represents their true class labels. We want to recognize the unknown classes to which new unlabelled test patterns belong. For this purpose we pretend there is a generative model, with unknown parameter Φ, that ge...

متن کامل

Likelihood-Based Naive Credal Classifier

Bayesian Classifiers Learn joint distribution P(C,F) Assign to f the most probable class label argmaxc′∈C P(c′, f̃) This defines a classifier, i.e., a map: (F1× . . .×Fm)→ C Credal Classifiers Learn joint credal set P(C,F) Set of optimal classes (e.g., according to maximality ) {c′ ∈ C |@c′′ ∈ C ,∀P ∈ P : P(c′′|f̃) > P(c′|f̃)} This defines a credal classifier, i.e., (F1× . . .×Fm)→ 2 May return mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2011

ISSN: 1875-6891,1875-6883

DOI: 10.1080/18756891.2011.9727792